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OUTLINE

® |LWIR detection — Why so challenging, & what key parameters can we
improve with electronic & optical engineering?

® “W’-superlattice absorber for LWIR photodiodes
® Graded-gap “W” for LWIR photodiodes
® Hybrid Photodiodes : TSL/GG-W

® Suppression of surface currents
— Self-passivation by GG-W

— Shallow-Etch Mesa Isolation (SEMI)



CHALLENGES OF LONG A DETECTION

 Significant challenges in growth/processing of MCT and ABSLs
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Because thermal generation rate scales exponentially with E, detection is many
orders of magnitude more challenging in LWIR than NIR

G-R & tunneling currents also scale exponentially with E,, as does sidewall leakage



DIFFUSION CURRENT: MAXIMIZE LIFETIME

jpPusion = glLg; — qLn?/N,z nZ = N.N,exp(-E/kgT)
Small E; in absorber is fixed by A,, — So at least maximize t
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Long lifetime minimizes thermal generation rate
(& also maximizes diffusion length for high QE)
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* Auger lifetime: Enhance with band-structure

engineering c s
10-28 ,,,
— CCCH processes strongly ¥n ; AqAnGaASpA InGaAsS QW
~ p . L . InGa,Ts QW. | | | | | | |
suppressed because m, ~m, ~u N TS R A
— Eliminate valence intersubband resonances to g (um)

suppress CHHH & CHHL (Easier said than done —
Band parameters not sufficiently well known)

— If further suppression is possible, ternary offers more flexibility
than binary (whereas growth quality may favor binary)

* Shockley-Read lifetime (typically 10-100 ns): Key is high MBE quality



3D DOS

ANTIMONIDE “W” DETECTORS

Aifer et al., APL 89, 053519 (2006)

Type-Il “W” Superlattice (WSL)
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Primary advantages:

(A). 2D DOS for more abrupt absorption edge
(B). Heavier mass for tunneling suppression
(C). Flexible independent control over CBO & VBO

Energy



DOS FOR STRONG ABSORPTION
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W-QW has much sharper absorption edge than superlat  tice (Must be careful,
because absorption over broad band often more relev ant than just at band edge)
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but worse because:
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InNAs/Ga(In)Sb SL typically has
3 x larger electron mass than HgCdTe

Mass in “W” SL much larger than that, tunable
with barrier thickness :H: :H:_:I:I:_

But we can do better!




‘W’ WITH GRADED-GAP DEPLETION REGION

Need to have a small gap in absorber, but not everywhere — Since abrupt shift of E,
would induce large barrier to minority-carrier extraction, grade the depletion region:

p Absorber P

Ungraded p*-p-n’

» Depletion region of ungraded p-i-n
has very high internal fields

(mid-104 V/cm) — Induces
excessive tunneling & G-R

Energy (eV)

« Grading transfers high fields to
larger-gap region
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GRADING PROFILES

Grading should compensate internal field in depletion region, which is determined
by unintentional background p- doping level (py,)
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INDEPENDENT CONTROL OVER CBO & VBO

“W” SL

CB ™

VB

Each “W” region has different QW
thicknesses (but fixed GalnSb &
AlGalnSb alloy compositions)

* 3 knobs (InAs, GalnSh, & AlGalnSb thicknesses) allow nearly independent control
over CBO, E,, & strain compensation (Impossible with 2-constituent SL or MCT)
* No need for challenging mid-growth variations of alloy composition



Graded-Gap “W” Photodiode for Long-Wave
Infrared Detection

N* capping
layer
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Sidoped (~ 0.30 pum) ’

Grade E ® 3021 mev
: slowly
Lightly doped @ 110 mev
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GG-W PHOTODIODES:

Nearly-flat I-V implies strong suppression of

tunneling, TAT, & G-R currents in GG-W
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GG-W (RA,;) vs. MCT
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GG-diode results approach MCT rule07 — poised to mov e ahead



‘W LIMITATION — LOWER MOBILITY

Larger m_, in WSL suppresses tunneling, but with -
unwanted side-effect of decreasing mobility

Fix: Hybrid, with SL absorber but GG-W depletion region
(Also reduces scattering by eliminating 2 interface S per
period, & eliminates Al-containing layers)
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Quantum Efficiency (%)

PRELIMINARY HYBRID SL PHOTODIODES
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Initial hybrid structures yield higher QE than GG-W & lower dark
current than TSLs, however QE is only marginally be  tter and dark
current characteristics inferior to GG-W



Quantum Efficiency [%]

Current density(A/cm?)

RECENT HYBRID SL PHOTODIODES
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Recent hybrid structures also yield
higher QE than GG-W with improved
dark current characteristics due to
improved designs

Thicker hole well in SL and refinement of
bandgap grading for HSL
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“B ) SURFACE CURRENT: SELF-PASSIVATION IN GG-W

Sidewall resistivity extracted from R,A dependence on Perimeter/Area ratio
(D = 100-400 um)
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Psurface — 4200 — 450,000 2-cm higher than for ANY earlier LWIR T2 results
(both passivated & unpassivated), indicating self-p assivation in GG-WSLs
But it's not enough



LOWERING THE PASSIVATION BAR:
SHALLOW-ETCH MESA ISOLATION (SEMI)

SEMI process, combined with GG-material, completely eliminates all
exposure of narrow-gap regions to sidewalls

Passivation of wider-gap material much less challen ging
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S | junction
I 0.0+
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Buried
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Distance (nm)

500

SEMI also allows 100% optical fill
factor combined with reduced
junction area, by relying on lateral
diffusion of photoexcited carriers

opt



SEMI: EFFECTIVE SELF-PASSIVATION

Burying the narrow-gap region substantially =~ ——~  N——

increases the sidewall resistivity

HSL photodetector with L =1 um
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_ § SEMI MINI-ARRAYS: LOWER SIDEWALL CURRENTS
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Long-A detection is orders of magnitude more challenging — For best D*, maximize
QE & minimize various dark currents by using electronic/optical engineering to
enhance: (1) absorption, (2) mobility, (3) lifetime, & (4) energy gap

“W” SL combines 2D DOS for high a, large m,, for suppressed
tunneling, & flexible independent control over CBO & VBO

Graded-gap “W” strongly suppresses tunneling & G-R currents ﬁ

Hybrid (SL absorber + GG-W depletion region) enhances QE (L, > 6 um) yet
maintains good dark current characteristics
Surface currents reduced:
— (1) Increased E in depletion region of GG-diodes provides self-passivation
— (2) Shallow-Etch Mesa Isolation (SEMI) + GG-diodes A AN—
» Eliminates all narrow-gap exposure to etched sidewalls
* Reduces junction area while maintaining 100% fill factor

* Mini-array testing: Far lower surface dark currents (sometimes)
& greater temporal stability than conventional deep etch

To beat MCT, still need to put all the pieces toget her!



